

## FL 09.2 - HYDRAULIC RAM



The FL09.2 is a equipment that aims to demonstrate and study the phenomenon known as water hammer, this phenomenon is the one that occurs due to the rapid closure of the passage of water through a pipe. The design of the equipment is made with special emphasis on the didactic field, so it is supplied with variable elements, to achieve a greater number of tests for a better understanding of the student.

The set has three different tanks which are located at different heights. One of them is used to make the water supply constant, for that we use a tank with pressurized air that homogenizes the water supply to the raised tank. In order that the fluid does not return to this tank this is supplied with a non-return valve. In the case of the other two tanks one has a fixed level overflow and the other an adjustable level overflow which is the tank which is situated at a higher height.

The equipment has a quick-closing valve which allows the flow generated by the overpressure to be cut in the pipe that causes the water hammer phenomenon.

In addition, the equipment has two lengths of pipes of different lengths (one section will be of a length of 1m and the other section will have a length of 3m), which allows to perform different tests , exchanging the hoses and performing a greater number of tests.

Furthermore, the equipment is provided with a volumetric vessel up to 500ml capacity in order to made the appropriate test measurement.

Finally, the equipment is provided with a hose for the possible connection to the hydraulic bench or the hydraulic unit.



# FL 09.2 - HYDRAULIC RAM



The manual shows clearly and with a lot of images, the hole process to operate the equipment.

| DIKOIN ,                                                                                                                                                                                                                               | DIKOIN                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>              Pararevitarquerelagua elevadaral·depósito:superior retroceda, el·equipo:dispone-<br/>de·una·válvula·antirretorno.¶      </li> </ul>                                                                             | . 4.1.1.5 €ficiencia delariete hidráulico¶                                                                                                                                                                                                                                 |
| La-longitud-de-la-tubería-influye-en-el-tiempo-del-ciclo,-a-mayor-longitud-<br>ciclos-más-largos.¶                                                                                                                                     | En ingenieria ser define la reficiencia como la relación entre la potencia útil y la<br>potencia entregada. «<br>En unestro caso la potencia entregada es la que tenemos en la entrada del ariete                                                                          |
| 4.1.1.3 Relación de caudalesteórica ¶                                                                                                                                                                                                  | hidráulicor que es el·depósitor inicial، <u>Restructué</u> کی کی کردهند کی کردی ۲۰ la potencia útil·es la que<br>obtenemos a la salida, en el·depósito superior، ک <sub>اف</sub> ت چه د م <sub>ا</sub> دی و د برای es etcin ۹                                              |
| Partiendo de un depósito a runa altura h, la energía que tenemos en la superficie libre<br>del mismo resrenergíar potencial según la expresión (†                                                                                      | $\eta = \frac{P_{\text{still}}}{P_{\text{startagesta}}} = \frac{Q_{\text{startages}} * H}{Q_{\text{startages}} * h_{\pm}} \mathcal{T}$                                                                                                                                     |
| $\mathit{Epot}_{v} = m_{i} * g * h_{i}  \mathit{T}$                                                                                                                                                                                    | Algunos- autores- consideran- la- potencia- útil- como- la- potencia- proporcionada- por-                                                                                                                                                                                  |
| Larenergía del aguarelevada al depósitor superior, restambién energía potencial según<br>la rexpresión: «]                                                                                                                             | encima·de·la·de·partida·es·decin·el·Queza; por el·salto·proporcionado·por-el·ariete·<br>hidráulico, siendo-este·último·la·diferencia·entre·la·atura·de·salida·H·menos·la·de·entrada·<br>h1Pa_i = 0 « Queza, el « (H = h.)) « donde H = h.+ dH. « non/is·qued H = h. = dH ¶ |
| $Epot_{x^*} = m_2 * g * H  f$                                                                                                                                                                                                          | $\eta = \frac{P_{atti}}{P_{attronas}} = \frac{Q_{atronas}^* \Delta H}{T_{rest} * h_{\tau}} \tau$                                                                                                                                                                           |
| Igualandorambasrexpresionesrtenemosrque:¶                                                                                                                                                                                              |                                                                                                                                                                                                                                                                            |
| $m_1*h_1=m_2*Hf$                                                                                                                                                                                                                       | Salto de página¶                                                                                                                                                                                                                                                           |
| Si empleamos los caudales másicos o volumétricos, ya que consideramos el agua<br>como un fluido incompresible, tenemos: §                                                                                                              |                                                                                                                                                                                                                                                                            |
| $Q_1 * h_1 = Q_2 * H \Longrightarrow \frac{Q_1}{Q_2} = \frac{H}{h_1} \mathcal{F}$                                                                                                                                                      |                                                                                                                                                                                                                                                                            |
| Es decir, que la relación entre el caudal inicial y el caudal elevadores inversamente<br>proporcional: a la relación entre la altura-elevada y la altura inicial. A mayon altura de<br>elevación menon proporción de caudal elevado. ¶ |                                                                                                                                                                                                                                                                            |
| 4.1.1.4Rendimiento volumétrico ¶                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                            |
| El·rendimiento·volumétrico·es·la·relación·entre·el·caudal·total·que·llega·al·ariete·<br>hidráulico·y·el·caudal·elevado·o·útil. ¶                                                                                                       |                                                                                                                                                                                                                                                                            |
| $\eta_{volumetrico} = rac{Q_{volvered}}{Q_{volumetrico}} \; 	au$                                                                                                                                                                      |                                                                                                                                                                                                                                                                            |
| 10%                                                                                                                                                                                                                                    | 1 11                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                            |

The instruction manual explains and shows all the theoretical foundations, as well as all the mathematic expressions used during the experimentation.



# FL 09.2 - HYDRAULIC RAM

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Caudal-alevado         2608         228         42,58         42,70         x           Caudal-alevado         2008         20,168         42,868         42,70         x         37,128         2208         2108         20,78         36,528         37,718         37,128         2208         2108         20,78         36,528         42,868         42,868         16,948         165,748         159,468         x         2004         2108         20,78         36,528         222,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         23,22,268         24,22,268         24,22,268         24,22,268         24,22,268         24,22,268         24,22,268         24,22,268         24,22,268         24,22,268         24,22,268         24,22,268         24,22,268         24,22,268         24,22,268         24,22,268      |
| 360x         6,94z         186,74z         189,46z         200z         21zz         37,71z         200z         21zz         37,71z         20zz           Caudal-perdido         450x         6,43z         192,17z         189,46z         7,71z         200z         21zz         23zz         22zz                                                                                                          |
| Caudal-particio         ASR         139,45         189,45         a           Caudal-particio         5,438         132,178         189,45         a         222,26         232,26         3738         5,518         222,26         232,26         323,278         189,45         3738         5,518         222,26         323,278         189,45         3738         5,518         222,26         323,278         189,45         340,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         19,45         <                                                               |
| Caudal:         < |
| Standal:         Caudal:         Atr.         Rediation:         Efficienciax         K           elevadox         perdidox         Atr.         Relación:         Efficienciax         K         1           42,70x         189,468         143z         62%z         19%z         4%z         K         Caudal:         Caudal:         Caudal:         Caudal:         Caudal:         Caudal:         Volumétricox         Eficienciax           42,70x         189,468         143z         62%z         19%z         4%z         K         37,12z         232,31z         284z         70%z         14%z         62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| DIKOIN | → | 4                       |
|--------|---|-------------------------|
|        |   | FL-09.2-ARIETE-HIDRÁULI |

## Instalación·tramo·corto¶

| Lectura: nºa  | Tiempo   | Tiempo¶ Volumen¶ |             |                  | Caudal        |         | udal•medio  |
|---------------|----------|------------------|-------------|------------------|---------------|---------|-------------|
| Lectora 11-4  | (segundo | gundos)× (litros |             | vo               | volumétrico×  |         | (l/s)×      |
| Caudal·elevad | 260#     | 0¤ 23,69¤        |             |                  | 39,51# 38,90# |         |             |
| Caucar erevat | 235#     |                  | 22,09#      |                  | 38,30#        |         | 30,304      |
| Caudal perdid | 370#     |                  | 7,09#       |                  | 187,87¤       |         | 189,19¤     |
| caddar perdid | 480#     |                  | 9,07#       | 190,52×          |               | 105,154 |             |
|               |          |                  | 1           |                  |               |         |             |
|               |          |                  | 1           |                  |               |         |             |
| Caudal        | Caudal   | Caudal AHK       |             | in.              | Rendimier     | ito.    | Eficiencial |
| elevado×      | perdido× | 4015             | caudales-te | caudales-teórica |               | co×     |             |
| 38,90¤        | 189,19¤  | 288#             | 69%¤        |                  | 17%#          |         | 8%#         |



#### **LEARNING OBJECTIVES**

• Visualization and analysis of the water hammer phenomenon caused by the closing of a valve.

- Hydraulic ram functioning.
- Air chamber functioning.
- Theoretical flow rate.
- Volumetric performance.
- Efficiency of the hydraulic ram.

• Study of the difference in the operation of the phenomenon in function of:

- the lenght of the supply pipe
- the volume of air in the chamber
- the speed of the flow of supply

## FL 09.2 - HYDRAULIC RAM

## **DATOS TÉCNICOS**

#### Deposits:

- Transparent PVC tank with fixed level overflow.
- Transparent PVC tank with adjustable level overflow.
- Height of the lower tank aprox.: 960 mm.
- Height of the upper tank aprox.: 1130 mm.

### Pipe:

• Pipe of Ø inner 16 mm.

#### Sections:

- Short section: 1 meters
- Long section: 3 meters

#### Hydraulic ram:

- Flow rate: 240 l/h
- High flow: 40 l/h
- Maximum lift height: 250 mm

### **REQUIREMENTS**

• Hydraulic bench FL 01.4.