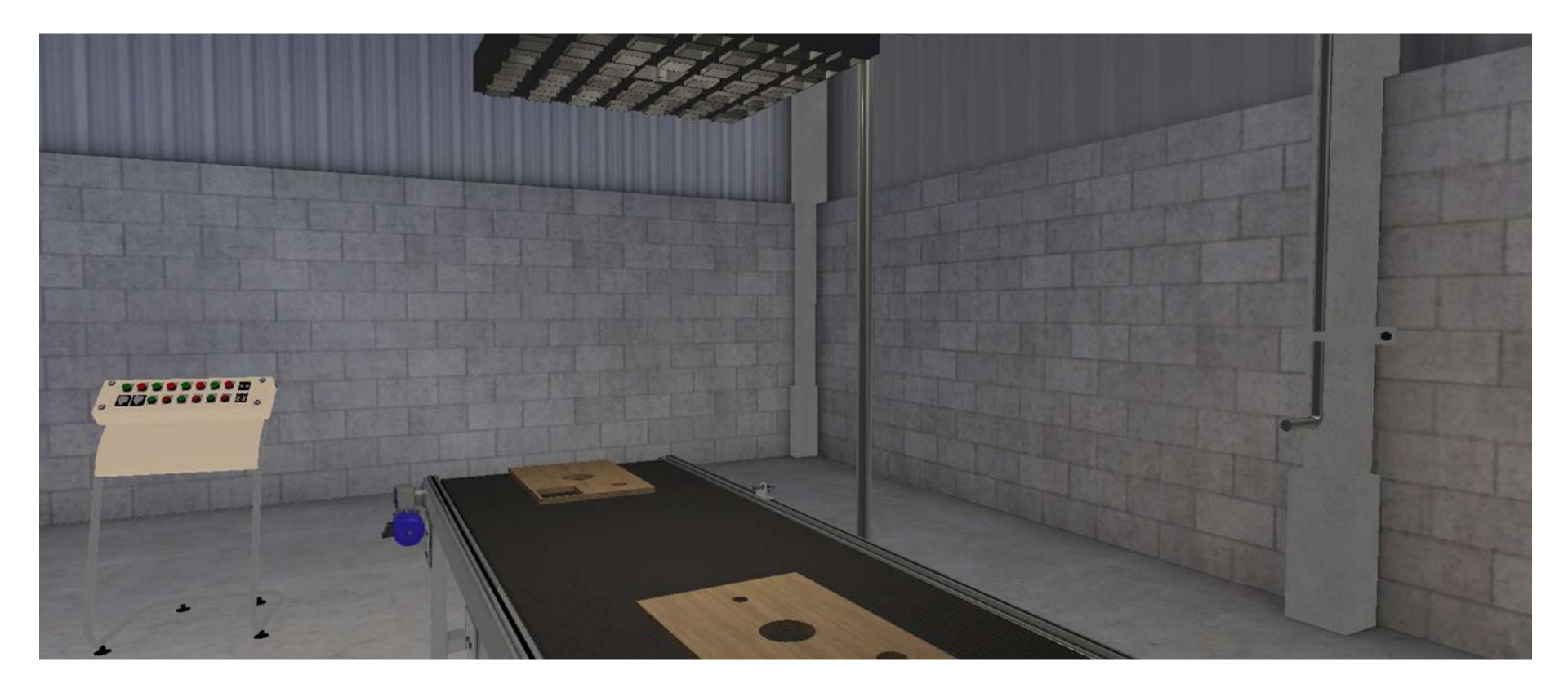


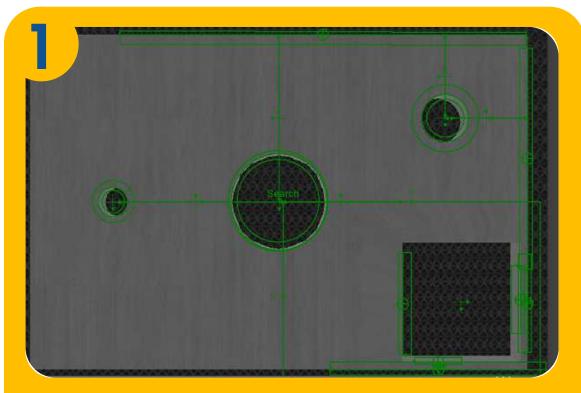
SMARTSIM

DL SMART-MV

MACHINE VISION COURSE


SMART SIMULATOR FOR LEARNING MACHINE VISION

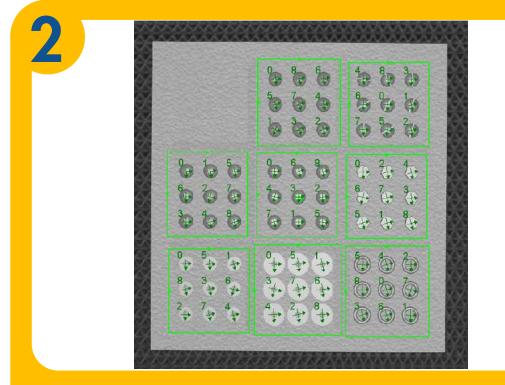
PROFESSIONAL EXPERIENCE


REAL-LIFE SITUATIONS

3D INDUSTRIAL REAL-LIFE SITUATIONS TO PROVIDE REAL PRACTICAL EXPERIENCE TO STUDENTS

[🗋 de lorenzo 🔯

EFFECTIVE LEARNING WITH GUIDANCE, REAL-LIFE PROJECTS, THEORY AND INSTRUCTIONS FROM BASIC TO ADVANCED



REAL TIME METROLOGICAL INSPECTION

DE LORENZO

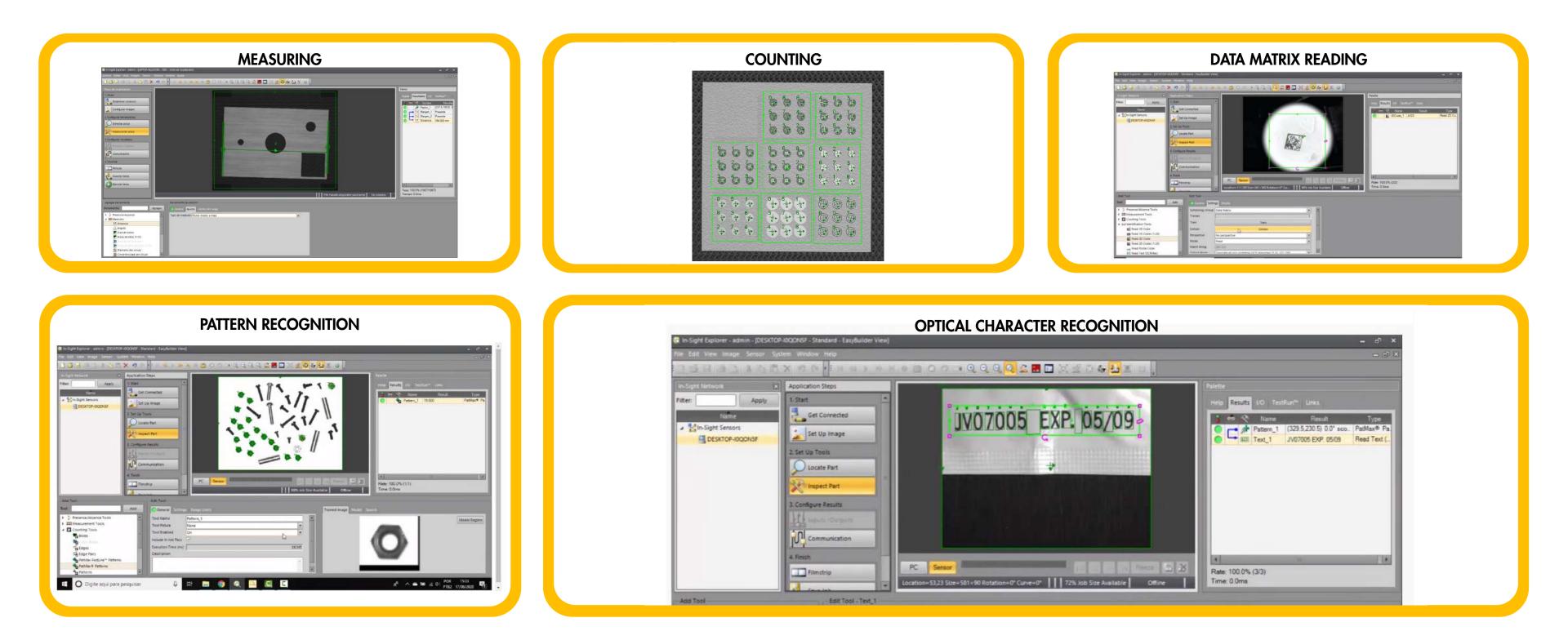
Goal: The student is required to implement a measurement system to inspect furniture parts in real time, in a production line.

Automation contents: Cognex In-Sight software, system setup, positioning, calibration, measurement tools, use of the spreadsheet, inspection validation.

PATTERN RECOGNITION AND COUNTING

Goal: The student is required to implement a machine vision system using Cognex In-Sight to inspect if all assembly components are being provided in the correct quantities with the furniture.

New automation contents: pattern recognition, counting.


READING BAR CODES AND OCR

Goal: The student is required to implement a machine vision system to read the tag on the furniture box in order to ship it to the right customer.

New automation contents: OCR, bar code, data-matrix reading tools.

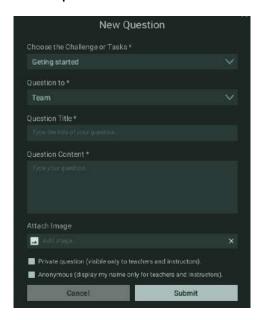
With the industrial 3D environments and also the built-in projects it's possible to develop solutions in a software widely used in industries and work with very useful features.

De Lorenzo 🐲

WHY IS IT A SMARTSIM?

IT CONNECTS PROFESSOR, STUDENT AND SCHOOL

DE LORENZO


SW

COMPATIBLE WITH THE DL SMART-DASHBOARD (SOLD SEPARETLY)

De Lorenzo's cloud server receives students activities and provides reports and analytics to professors and institutions. Besides, a student can start working at school and continue at home or vice-versa.

The platform includes a query and answer system that enables professors to support the students counting on a team of monitors. That means better support with less effort of the professors. The students can see questions asked by other colleagues too so that way if more than one student have the same doubt the professors answer will attend them all.

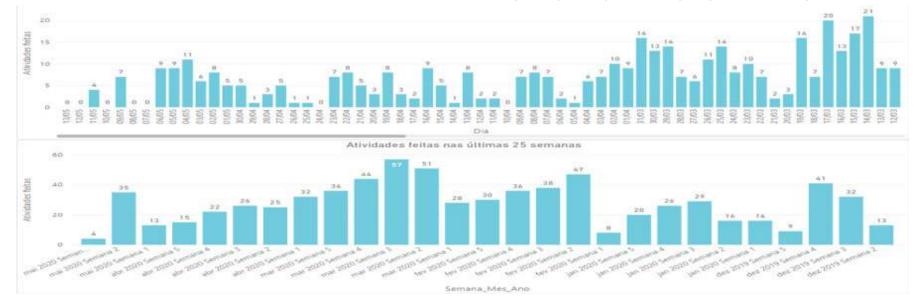
PROFESSORS CAN FOLLOW STUDENTS PROGRESS

The professor can do and access everything the student can. Besides, he/she can also access the dashboard's portal. It includes interesting reports and analytics that help the professor to monitor the group in real time, as well as to identify students who are doing very well, as well as those who need help, who are not working at all and who seem to be "cheating".

Tasks report

This is an important tool since it provides evidence of the activities a student worked on. That means the school has evidence of the practical activities the distance learner has done with detailed information about it.

Curso	Tarefa	Timestamp	IsDon
Scripts	1.1 - Abrindo uma tela modal	3/9/2020 6:33:37 PM	False
Desenvolvimento de sistemas supervisórios	2.6 - Implementar Gráficos	11/22/2019 7:14:00 PM	False
Desenvolvimento de sistemas supervisórios	2.5 - Montar interface principal	11/18/2019 5:04:15 PM	True
Desenvolvimento de sistemas supervisórios	2.4 - Construindo os objetos da aplicação	11/18/2019 4:28:54 PM	True
Desenvolvimento de sistemas supervisórios	2.3 - Explorando Recursos	11/15/2019 5:35:44 PM	True
Desenvolvimento de sistemas supervisórios	2.2 - Conhecendo o Elipse E3	11/15/2019 5:10:00 PM	True
Desenvolvimento de sistemas supervisórios	2.1 - Comunicação OPC	11/14/2019 12:57:42 PM	True
Desenvolvimento de sistemas supervisórios	1.8 - Comandos pelo supervisório	11/14/2019 11:25:14 AM	True
Desenvolvimento de sistemas supervisórios	1.7 - Implementando alarmes	11/8/2019 7:33:30 PM	True


PROFESSOR CAN SEE WHICH STUDENTS ARE ON SCHEDULE

With this interface, the professor may choose which groups he/she wants to monitor, to verify who is on schedule, who is pending and so on. It is possible to define the expected progress percentage in relation to the tasks available in the course.

(Line			Grupo		% Aprovaces
Suitiple selections	~	#0 P 17,18,19 A		~	70
					0
Curso	Controle d	e Processos	Visão	Artificial	
Aluno	Atividades feitas	Minimo atividades	Atividades feitas	Minimo atividade	
anonymized	12	27			
anonymized	39	27	. 7	8	2
anonymized	30	27	7		5
anonymized	39	27			
anonymized	39	27	7		
anonymized	. 1	27	7	1	
anonymized	30	27	1	23	
anonymized	11	27		83	
anonymized	27	27			
anonymized	12	27			
anonymized anonymized	39	27			
anonymized	39	27			
anonymized	39	27	7	1	-
anonymized	33	27	7		4
anonymized	39	27	7	1	
anonymized			. 7		
anonymized	39	27	7		
anonymized	36	27	1		
Total	39	27	7		

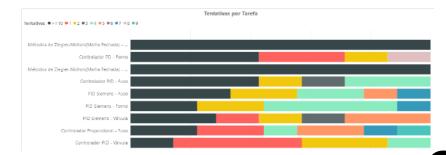
RHYTHM

This other dashboard shows the number of activities the students did daily and weekly. The professor may decide to verify it regarding a whole group/class or a specific student.

EFFORT/TASK DEDICATED TIME

If the professor selects a student, he/she may verify how much time the student took to develop and deliver each task of the course.

Duracao Total (h)	
4.33	
4.08	
3.14	
2.50	
2.45	
2.35	
1.99	
1.88	
1.63	
1.44	
1.42	
1.29	
1.22	


PROGRESS VS TIME TAKEN

It is also possible to verify the distribution of the dedicated time with relation to the number of tasks done by each student at any period of time. That helps to identify who is doing well, who may need help, who is doing nothing and who is trying to cheat.

TRIALS PER TASK

This chart helps the teacher to understand which task may be the most difficult and which one may be the easiest in order to adjust the deadlines.

IT'S A 3D SIMULATOR

DE LORENZO 鏠

IT HAS BUILT-IN PROJECTS

MEASURING PARTS

TASK SPECIFICATIONS

Your first job in this project is to implement a system to make measurements using Machine Vision in order to assure 100% conformity with the specification.

SOFTWARE SETUP

- Since it's your first time with In-Sight it's important that you learn how to use it. The following material will be helpful.
- <u>Configuration and Setup</u>
- Menu items Part 1: basic features
- Menu items Part 2: image features
- Menu items Part 3: application features

+ CONTENTS AND SUPPORT MATERIALS, SO THEY CAN LEARN BY THEMSELVES

STUDY AND LEARN

Before you work on anything, we recommend that you study the following material to understand:

- what machine vision is
- why one should use it
- what are its key parts
- and what it has to do with industry 4.0

The materials provided are from 2 of the main manufactures of machine vision systems: Cognex and Omron.

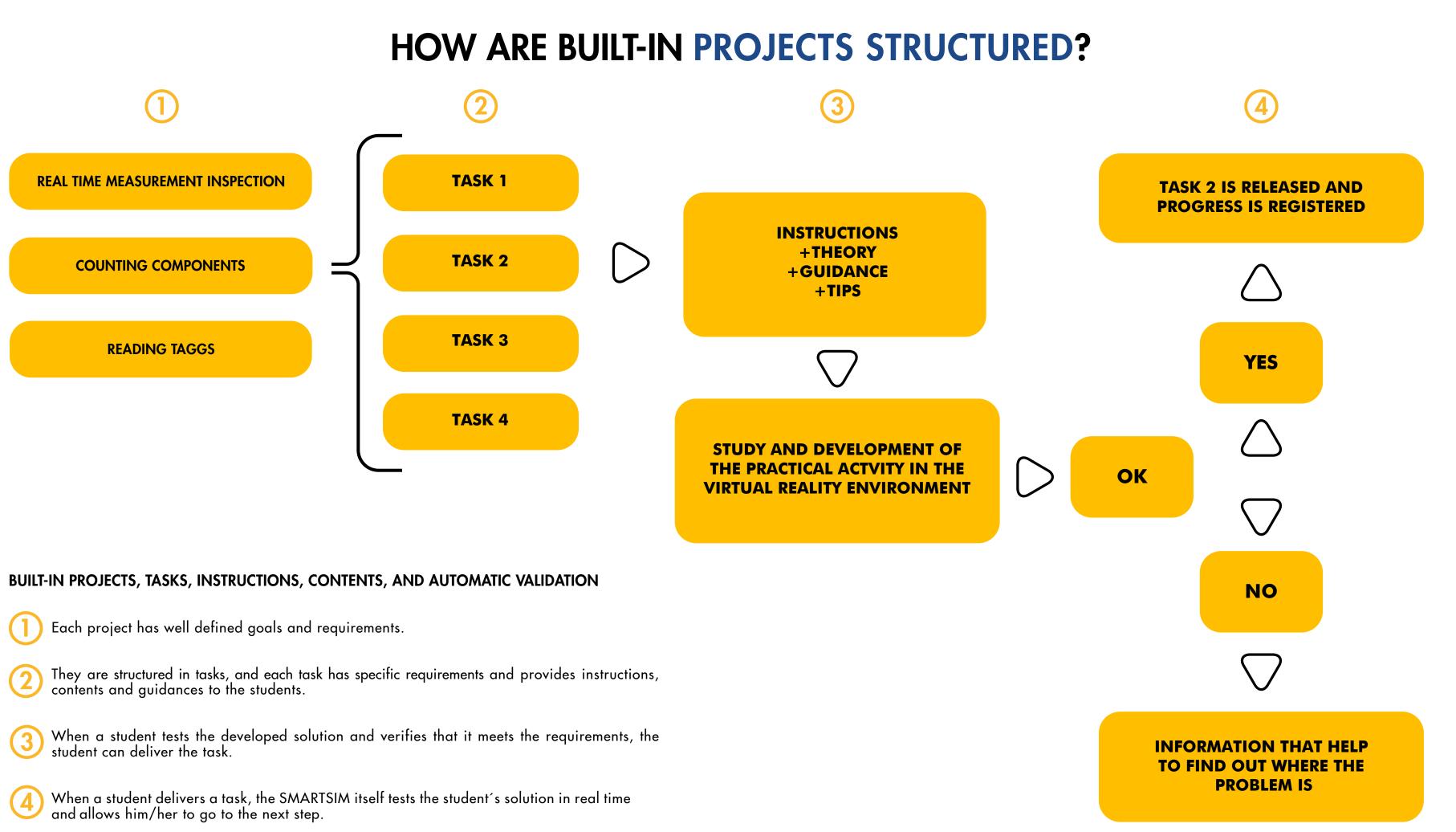
IT AUTOMATICALLY CHECKS STUDENT ACTIVITIES TO LET THEY MOVE ON, LIKE IN GAME

THE PROJECTS INCLUDE GUIDANCE

READING TEXTS

Now that we can read the data from the Data Matrix, we also need to read the data that is on the package in text form. Reading characters can be a very complicated task to implement, but the In-Sight already provides a ready and easy tool to use.

To understand a little bit about this tool you can access the link below, on it you will learn how to automatically validate texts in a very simple way.


Texts reading

As we have three texts, you should use the tool **three times** positioning it on the appropriate texts, one for the customer, one for the city and one for the store number. For the delivery, put the customer's name in the cell "M10", city in "M11", the store in "M12" and the reading of the Data Matrix in "M13".

PROFESSORS CAN MONITOR STUDENTS, AND VERIFY WHICH POINT THEY NEED HELP

Group Course View Student 1	×
User Progress (POLI)	User Activities
Student 1	Timestamp Tasks → Task Description
Student 2	Aug 26, 2019 1.1 - Breaking the inertia
	Aug 26, 2019 12 - Interlocking with endswitch
Student 3	Aug 26, 2019 1.3 - Retentive command
Student 4	Aug 26, 2019 1.4 - Adding other interlocks
Student 5	Aug 26, 2019 1.5 - Using the remote button
Student 6	Aug 26, 2019 2.1 - Manual operation
	Aug 27, 2019 2.2 - Simultaneous commands
Student 7	Aug 27, 2019 2.3 - Adding water
Student 8	Aug 27, 2019 2.4 - Adjusting the conveyors
Student 9	Aug 27, 2019 3.1 - Dosing station
Student 10	Aug 30, 2019 3.2 - Mixing station

SYSTEM REQUIREMENTS

ORDER CODES

DL SMART-MV

MACHINE VISION COURSE

DL-SMART-DASHBOARD

CLASSROOM MANAGEMENT FOR SMARTSIMs

IMPORTANT NOTE:

THIS PRODUTS DO NOT INCLUDE ANY THIRD PARTY SOFTWARES. TO OUR KNOWLEDGE, COGNEX INSIGHT EXPLORER CAN BE FREE DOWNLOADED ON COGNEX WEBSITE.

MINIMUM REQUIREMENTS

OPERATIONAL SYSTEM

64-BIT WINDOWNS 10

DIRECTX VERSION

DIRECTX 11

PROCESSOR

INTEL i5 9400F OR AMD RYZEN 5 3600

MEMORY

8GB

GHRAPHIC CARD

STORAGE

HDD (1GB)

RECOMMENDED REQUIREMENTS

OPERATIONAL SYSTEM

64-BIT WINDOWNS 10 PRO

DIRECTX VERSION

DIRECTX 12

PROCESSOR

INTEL i7 9700 OR AMD RYZEN 7 3700X

MEMORY

16 GB

GHRAPHIC CARD

NVIDIA GTX 1050 TI 4GB OR RX 550 4GB

STORAGE

HDD (1GB)