

Discontinuous Automatic Control - DAC

This laboratory is designed for the study of Discontinuous Automatic Control systems where the controller is composed of a an element with discontinuous intervention. A discontinuous controller is characterized by an output having two or more fixed states and its value is switched among these states according to the input value.

This trainer has a modular structure and it consists of didactic panels installed on a vertical frame. It is supplied with a theoretical and practical manual. The modularity of this didactic system can give the students a direct and immediate approach to the topics, offering the opportunity to study various subjects, performing several experiments as following:

- Two position controllers, three range controllers
- Sampling acquisition techniques
- The two position controller in a 1st order process
- The three range controller in a 2nd order process
- The two position controller with delayed feedback in a 2nd order process
- The two position controller with elastic feedback in a 2nd order process
- The sampling control in a 4th order process

AUTOMATIC CONTROL TECHNOLOGY

List of modules for experiments:

		MODULES														
No	EXPERIMENT	DL 2613	DL 2614	DL 2622	DL 2674	DL 2675	DL 2678	DL 2679	DL 2680	DL 2687	DL PS-MODE	DL PP-MODE	DL ACTSW	DL 1893	DL 115ACT	DL 2100-3M
1	Controllers with 2 positions controllers with 3 ranges	1	1		1		1	2					1	1	1	1
2	Techniques of acquisition and sampling	1							1	1			1	1	1	1
3	Controller with 2 positions, process of 1st order	1	1			1		1				1	1	1	1	1
4	Controller with 3 ranges, process of 2nd order	1	1		1	1	1	2				1	1	1	1	1
5	Controller with 2 positions, processoro f 2nd order, delayed feedback	1	1		1	2		1			1	1	1	1	1	1
6	Controller a 2 positions, processor f 2nd order, elastic feedback	1	1		1	2		1				1	1	1	1	1
7	Controller with sampling process of 4th order	1	1	1		2			1			1	1	1	1	1
8	TOTAL	1	1	1	1	2	1	2	1	1	1	1	1	1	1	1